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Abstract—Many domains of scientific simulation (chemistry,
condensed matter physics, data science) increasingly eschew
dense tensors for block-sparse tensors, sometimes with additional
structure (recursive hierarchy, rank sparsity, etc.). Distributed-
memory parallel computation with block-sparse tensorial data
is paramount to minimize the time-to-solution (e.g., to study
dynamical problems or for real-time analysis) and to accom-
modate problems of realistic size that are too large to fit
into the host/device memory of a single node equipped with
accelerators. Unfortunately, computation with such irregular
data structures is a poor match to the dominant imperative,
bulk-synchronous parallel programming model. In this paper,
we focus on the critical element of block-sparse tensor algebra,
namely binary tensor contraction, and report on an efficient and
scalable implementation using the task-focused PaRSEC runtime.
High performance of the block-sparse tensor contraction on the
Summit supercomputer is demonstrated for synthetic data as well
as for real data involved in electronic structure simulations of
unprecedented size.

Index Terms—electronic structure, tensor contraction, block-
sparse matrix multiplication, distributed memory, multi-GPU
nodes, PaRSEC.

I. INTRODUCTION

The current path to exascale computing relies on an exten-
sive use of accelerators. As of today, the Summit and Sierra
systems [1] are number 2 and 3 on the TOP500 list [2]. Both
systems are distributed-memory platforms where each node is
equipped with several high performance NVIDIA accelerators.
For instance Summit nodes include 6 NVIDIA V100 GPUs,
interconnected at the node level by multiple NVLinks. The
forthcoming Frontier exascale system [1] is announced with
four AMD Radeon GPUs per node. On Summit, more than
97% of the overall compute performance is on the GPU side.
The emerging trend remains consistent across all state-of-the-
art platforms equipped with accelerated nodes: these machines
draw most of their computing power out of the accelerators;
hence, it is crucial, for any efficient and scalable algorithm, to
be able to extract the most performance out of the accelerators
to achieve high overall efficiency.

The existence of highly capable hardware only translates
in application performance if software support exists. The
community effort is well on its way to implement dense linear
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algebra libraries for multi-GPU accelerated nodes. Several on-
going projects aim at designing dense linear algebra kernels,
not only to achieve high TOP500 performance, but to allow
a broad range of applications to benefit from the computing
power lying in the accelerators. While most projects are
conducted by vendors (Intel, AMD, NVIDIA, Cray), some
academic projects, such as SLATE [3], are publicly available,
and provide efficient CPU or GPU implementations for most
traditional dense linear routines. Recently, support for a limited
number of operations in a multiple-accelerator setting has been
added, with some matrix-size constraints. For instance the
current matrix product C = A × B is limited to problems
where the entire C matrix can reside in the memory of the
accelerators. A similar academic effort proposes a distributed
multi-accelerators prototype for matrix-matrix multiplication
without any size restriction within the PaRSEC task-based
runtime system [4].

Achieving good performance for dense linear algebra ker-
nels is only a first step to achieving exascale performance for
general scientific applications. This can be seen by looking
at the performance discrepancies between two of the most
widely used benchmarks in HPC, the HPL (High Performance
LINPACK) benchmark used in the Top500 list, and HPCG
(High Performance Conjugate Gradient) benchmark, more rep-
resentative of the behavior of a typical scientific application.
On Summit, the performance of HPCG is 50 times lower than
that of HPL. This is because HPCG involves a communication-
bound kernel with sparse fine-grained computational kernels,
as opposed to a computation-bound kernel with dense Level3-
BLAS routines for HPL.

This paper aims at complementing the insight gained from
the HPCG benchmark by exploring another important and
widely used computational kernel in High Performance Com-
puting. We consider how the binary contraction of block-
sparse tensors, a key paradigmatic operation for a variety of
physical simulation and data-science domains, can be imple-
mented efficiently on large-scale distributed-memory multi-
GPU accelerated platforms. To assess the performance, we
consider a mix of synthetic problem setups and contrac-
tions taken from actual simulations of electronic structure
of molecules. The binary tensor contraction will be mapped,
as is typically done, onto the GEneral Matrix Multiplica-
tion (GEMM) C ← αAB + βC. While the dense matrix
multiplication is a formidable, but manageable, challenge on



distributed memory heterogeneous platforms for the relevant
problem sizes [4], the block-sparse matrix multiplication adds
several new challenges. First, the rows and columns of the
three matrices are tiled nonuniformly, due to the nonuniform
structure of the underlying physical problem. Second, the
matrices are block-sparse, with the fill degree greatly varying
with the particular simulation from 100% (for high-precision
simulation on compact molecules) to a few percent even
for modestly-sized simulations. Third, the aspect ratios of
the matrices can vary greatly from 1 (square) to 100s (tall-
and-skinny, or short-and-wide); the particular paradigmatic
example from the electronic structure domain that we focus on,
involves a large square matrix B and short-and-wide matrices
A and C, with aspect ratios on the order of 100. All these
characteristics decrease potential data-reuse and arithmetic
intensity, and dramatically complicate the design of an efficient
algorithm targeting multi-GPU accelerated nodes. The main
contribution of this work is the design of a generic and flexible
implementation of this block-sparse kernel, and its analysis on
a large multi-GPU platform.

The rest of the paper is organized as follows. Section II sur-
veys the motivating science application. Section III overviews
the main design principles of our algorithm. Section IV
discusses the main details of the prototype implementation,
which is publicly available with all benchmarks used in this
work [5]. In Section V, we report preliminary performance
results. Section VI briefly discusses related work, before we
conclude in Section VII.

II. MOTIVATING SCIENCE APPLICATION

Our goal is to deploy the distributed memory block-sparse
matrix multiplication in the context of electronic structure
applications for quantum mechanical simulation of molecules
and materials from first principles. Accurate simulation of
electronic structure, via the coupled-cluster [6] and many-
body Green’s function approaches, is feasible but expensive,
i.e., such many-body methods have high-order polynomial
operation and space complexity; for the foundational Coupled-
Cluster Singles and Doubles method (CCSD), these are N6

and N4, respectively, with N proportional to the system size.
The high complexity limits the applicability of conventional
(naive) formulations of predictive methods to systems with a
few (5-10) atoms on a single workstation, and a few dozen
(50-100) atoms on a supercomputer [7]. However, the recent
emergence of robust fast/reduced-scaling formulations has
greatly extended the applicability of such methods to hundreds
of atoms on a single workstation in a matter of days [8].
Modern state-of-the-art HPC platforms should make it possible
to deploy reduced-scaling coupled-cluster (CC) methods with
time-to-solution measured in minutes rather than in days. The
complex tensor algebra involved in the CCSD method can
be reduced for our purposes to a single representative term,
usually the most expensive one (accounting routinely for 90%
or more of the work), colloquially known as the ABCD term:

Rij
ab =

∑
cd

T ij
cdV

cd
ab + . . . , (1)

where the elements of tensor T are the model parameters to
be refined iteratively (in typically 10-20 iterations) to make
tensor R vanish. Tensor V is fixed (does not change between
iterations). Ranges of all indices are proportional to system
size N , hence each tensor has N4 space complexity, and the
operation has N6 operation complexity.

The tensor contraction in Equation (1) can be viewed as
a multiplication of matrix T (with fused indices ij and cd
playing the role of row and column indices, respectively; in
subsequent sections such matricized tensor T will serve as
matrix A in C = C+AB) with square matrix V (with cd and
ab row and column indices; this will serve as matrix B). In
practice the range of unoccupied indices (a, b, c, d) has rank U
that is a factor of 5-20 times larger than the corresponding rank
O of the occupied indices ij, hence transposes of matricized
tensors T and R are tall-and-skinny matrices, with aspect
ratios of 25-400.

To set the scale for target calculations we consider predictive
calculations of the electronic structure of large molecules using
many-body theory. Central to this problem is solving a set
of coupled non-linear equations for the amplitudes tabij in
which i, j label one-electron states occupied in a zeroth-order
approximation to the wave function and a, b label excited
states with about 10 such states per electron. In a fully
dense calculation, which remains of interest for calibration and
benchmarking, the number of amplitudes grows as the fourth
power of the number of electrons. Thus, a calculation on just
1000 electrons exceeds the aggregate memory of all GPUs
in Summit just to hold the solution. Intermediates and other
quantities multiply the required memory. Reduced scaling
calculations significantly reduce the amount of data, but our
ambitions extend to systems with at least O(104) electrons
for which again, predictive calculations with controlled error
would greatly exceed available GPU memory.

In the conventional formulation of CCSD, all tensors are
generally dense (modulo prefactor-reducing block-sparsity due
to discrete geometric symmetries; here we only focus on
block-sparsity due to dynamical structure of the physical
problem that can lead to the reduction of complexity). The
formulation of dense matrix multiplication on distributed-
memory systems [9], including for rectangular matrices [10],
is relatively well understood and makes possible strongly
scalable CCSD implementations [7], [11]. Extending these
advances to reduced-scaling coupled-cluster variants in which
tensors have complex block-sparse structure is nontrivial due
to the physically-motivated nonuniform tiling of index ranges
(e.g., it is not in general possible to partition the basis into
even chunks without sacrificing locality). This leads to the
loss of the near-perfect load balance that makes traditional
communication-optimal algorithms attain strong scaling. Par-
allel computation with irregularly-tiled and/or data-sparse ten-
sorial data structures is also a poor match to imperative, bulk-
synchronous parallel programming style and execution models
due to the irregular (and potentially dynamic) structure of the
data. In this work, we demonstrate how these challenges can
be addressed by modern task-based dataflow-style scheduling



to achieve high performance on a distributed-memory het-
erogeneous cluster with multi-GPU nodes. The block-sparse
evaluation of the ABCD term in Equation (1) in the so-called
atomic orbital formulation will serve as the target performance
benchmark; the reference CPU-only implementation of this
term was developed in the open-source Massively Parallel
Quantum Chemistry (MPQC) program [12].

III. DESIGN PRINCIPLES

As already mentioned, the problem is generated from a 4-
dimension tensor, but can be viewed as a matrix multiplication,
C ← C +AB, with the following characteristics:
• The matrices are composed of heterogeneous tiles: the size
of the tiles strongly vary across rows and columns. and many
of them are too small to provide high computational intensity.
• The matrices are block-sparse. A significant fraction of the
tiles in A and B are zero tiles (which opens the possibility for
some tiles of C to be zero tiles too). The non-zero tiles are
dense, thus efficient dense linear algebra GEMM kernels can
be used for the non-zero tile products. Only non-zero tiles are
stored in memory.
• The matrices have very different sizes: A and C are short-
and-wide, while B is square. More precisely, A has size
M × K, B has size K × N , and C has size M × N ,
where M � K = N (typically N = 100M ). As for tile
indices, A has M (t) tile rows (of various heights) and B has
N (t) tile columns (of various widths) All these characteristics
dramatically complicate the problem.
• As pointed out in Section I, designing an efficient algorithm
for matrix multiplication on multi-GPU accelerated distributed
memory platforms is already a difficult task when A, B
and C are dense and square. Here, the heterogeneity of tile
sizes further hardens the management of GPU memory and
diminishes the peak performance of the kernels, while the
sparsity decreases data reuse across different GEMMs.

The target platform is composed of P processors, or nodes,
each equipped with g GPUs. We aim at executing the block-
sparse matrix product on a p× q process grid, where pq ≤ P .
For square and dense matrices, the traditional algorithm uses
a square 2D-grid with p = q, a 2D-cyclic distribution of the
three matrices, and computes C in place while A and B are
communicated through the network. The significantly larger
size of B in front of that of A and C requires changing the
traditional algorithm. In order to minimize network traffic, we
need to avoid circulating the largest of the matrices, so B
will be stationary. A solution is to distribute full columns of
B to processors, meaning that the distribution of B becomes
uni-dimensional on a flat 1 × q grid (where q = P ). Each
column of B is then entirely held by a single node, as opposed
to partitioned across grid rows. However, this alternative
is known to increase the communication volume related to
A; this is why 2D-grids are generally preferred for matrix
multiplication.

Yet another alternative is to duplicate the columns of B and
to use a p× q processor grid with p ≥ 2. In this last solution,
each grid row computes the product of an horizontal slice of A

by the whole matrix B. More precisely, A is segmented into
p horizontal slices, and all p grid rows work independently
on their own slice, without any communication and in full
parallelism. The price to pay is to replicate each column of B
p times in memory, one time per grid row, which puts pressure
on CPU memory, but not on GPU memory which is the actual
bottleneck for the computational perspective. We investigate
this last solution and keep the number p of grid rows as a
trade-off parameter: using p = 1 avoids the replication of B
but increases the communication volume of A; using p ≥
2 requires p copies of each column of B but decreases the
communication volume of A by a factor p.

The algorithm targets a 2D-grid of p× q processors where
p is a parameter and q = bPp c, where P is the total number of
available processors, so that pq ≤ P (see Figure 1). The matrix
A is distributed with a standard 2D-cyclic distribution. Let
A(k) be the slice of A distributed on row grid number k where
0 ≤ k ≤ p− 1: A(k) is composed of tile rows of A of index i
such that i mod p = k. Let C(k) be the corresponding slice of
C (same row indices as A(k)). Row grid number k computes
the product C(k) ← C(k) + A(k)B. All these products are
independent and are executed in parallel. Therefore, we focus
on the description of the algorithm on a single grid row, and
keep using A instead of A(k) to ease notations. Recall that A
now has M(t)

p tile rows (assume p divides M (t) for simplicity).
To ease reading, we will denote the algorithm in terms of rows
and columns, but remember that all operations are tiled, and
we use row to denote a tile row and column to denote a tile
column. The main operation of the algorithm on a processor
row of size 1× q is the following:

• Assign columns of B to the q processors, and on each
processor partition assigned columns into blocks, using
the load-balancing algorithm detailed in Section III-1.

• On each processor in parallel, compute the column blocks
one after the other. The size of a column block is
monitored so that its size does not exceed 50% of a GPU
memory. Hence each block will be transferred from the
CPU to the GPU only once. See Section III-2 for details.

• The operation within each block is segmented to avoid
GPU memory overflow. Communications from CPU to
GPU are carefully monitored throughout execution to
limit the number of A tiles transferred to GPU, in order
to ensure that no tile of B and C is ever flushed back to
CPU before all computations involving it, are completed.
See Section III-3 for details.

The overhead induced by the algorithm is of the same order
as the number of non-zero B tiles, and has a negligible cost
on execution. See the companion report [13] for details.

1) Column Assignment: To load-balance the product C ←
C+AB, let fk be the total number of floating point operations
(flop) corresponding to column k of B in the product, for
1 ≤ k ≤ N (t), assuming that non-zero tiles are dense. We
sort the columns by non-decreasing values of fk and assign
them to the q processors in a mirrored cyclic distribution: the
first q columns are assigned to the q processors in that order,
and the next q columns are assigned to the q processors in
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Fig. 1. Representation of a phase of the algorithm for the process at the
position (p = 0, q = 0) in the 2 × 2 process grid. Dark grey represent
data loaded and used for computations by this process, light grey by other
processes.

reverse order, and the process repeats every 2q columns. The
mirroring (reverse) pass is used to compensate the imbalance
due to the initial forward pass.

Let Bq denote the subset of columns assigned to processor
q. This node will be in charge to compute the same columns of
the product C. Note that C will therefore follow the same row
distribution as A and the same column distribution as B. The
assignment algorithm ensures that each node receives a set of
columns involving approximately the same amount of floating
point operations, at the granularity of the columns of B,
aiming at providing a good load-balance of the computations.

2) Partition into Blocks: Once the columns of B have
been assigned to the processors, they are divided into blocks
which are assigned to GPUs. While the assignment of columns
across nodes is intended to load-balance computations, the
partitioning into blocks on each node aims at monitoring GPU
memory usage. Locally, each processor computes a partition
of its columns into blocks whose size fits in half the memory
of one GPU. The goal is to enforce that each column of
B, together with the local C tiles in that column, will be
transferred only once to the GPU. The algorithm sorts local
columns (B columns assigned to the node) by non-increasing
memory size (volume of data for the column and local C
tiles) and allocates these columns in that order to the GPUs,
using a worst-fit algorithm. Each GPU starts with an empty
block which is filled as the worst-fit algorithm progresses. A
new block is created and assigned to a GPU in a round-robin
fashion when the current column does not fit anywhere, in
order to ensure no GPU is assigned more than one block
than any other GPU. During execution, blocks are transferred
from CPU to GPUs in sequence: the transfer of the next
block cannot start before operations on the current block are
completed (although some overlap is made possible by the
implementation as a task system, see Section IV). This is to
avoid new B tiles flushing out current B tiles still in use,

which is critical for performance [4]. Again, the size of a block
(including C tiles) is computed so as not to exceed 50% of
the GPU memory.

3) Segmentation into Chunks: There remains approxi-
mately 50% of GPU memory for A tiles, depending on the
space occupied by B and C. How to organize the transfer
of A tiles to maximize re-use within a block? Say there are c
columns of B in the block. We would like to work with groups
of several rows of A in parallel, say r rows, and to segment the
transfer of these tiles by chunks of k tiles per row: this mimics
the traditional algorithm that maximizes re-use by allowing b
chains of GEMMs to progress in parallel (one per column) and
enforcing a total of brk GEMMS with only rk transfers of A
tiles. The value of the chunk depth k is computed for each new
chunk of A so that rk tiles of A fit in the remaining memory of
the GPU. Unfortunately, there is no guarantee that such a nice
re-use will be achieved for our problem, because of the sparsity
pattern of the tiles. It may well be the case that a tile of A is
used only once instead of c times in the block, if c−1 out of the
c potential products involving it are with zero tiles of B. Still,
this segmentation should improve re-use, and we implement it
into chunks of r rows of A. However, due to the heterogeneity
of the tiles, we cannot load k tiles per row any longer; instead,
we build chunks greedily by adding one tile per row of A in
a cyclic fashion until half the remaining GPU memory, i.e.,
25% of total GPU memory, is exhausted. The other half of
remaining memory, i.e., the last quarter of total GPU memory,
is saved to prefetch the next chunk of A tiles, to increase the
overlap of communications with computations. Owing to this
careful GPU memory management, chunks can proceed with
minimal gap due to communications of A tiles, and without
any flushing of B and C tiles back to CPU memory.

IV. IMPLEMENTATION

This algorithm has been implemented using an inspector-
executor strategy over the Parameterized Task Graph (PTG)
language [14] over the PaRSEC runtime system [15]. The
implementation, as well as the benchmarks used to evaluate it
are available at [5]. See [13] for more information on PaRSEC
and PTG. The idea behind PTG is to define the Directed
Acyclic Graph (DAG) of tasks as a concise and parameterized
collection of tasks that exchange data through flows. Tasks
are defined using task classes (a rudimentary templating ap-
proach), and task classes express synthetic conditions to enable
input and output flows that carry the data. When the algorithm
is regular, these conditions are fixed by a few parameters of the
problem (e.g., the input matrix size, the tile size). In our case,
however, the problem is irregular, both because the matrices
are block-sparse and because they are irregularly tiled. Thus,
an inspector phase computes first what tasks exist, and how the
data must flow between them. Then, a generic PTG that takes
as input an execution plan produced by this inspector phase,
allows the runtime system to execute it. This is sufficient to
obtain a correct implementation of the irregular block-sparse
matrix product. However, in order to implement the algorithm
described above, one needs to be able to control the flow of



data across node boundaries; so we introduce, in addition to
the necessary data flow, a control flow that constraints the
choices of the runtime scheduler to those allowed by the
algorithm (Section III). Thus, the algorithm representation
can be seen as the superposition of two DAGs, having the
same nodes (the tasks) but different sets of edges. One DAG,
the dataflow DAG, represents the tasks and the data flow
between them, a pure dataflow description of the algorithm
as an unhindered rendition of the potential parallelism. The
second DAG, the control DAG, represents a set of performance
constraints, that are application and architecture specific, and
that are necessary for the runtime to provide a finer control
of the existing parallelism, in order to constraint when data
transfers happen. This is the way chosen to optimize the
execution of the tasks represented by the dataflow DAG.

The control flow DAG is also expressed within the PTG,
and depends on the GPU memory, and the sparsity of the
input matrices. Thus, it is also computed during the inspection
phase, and provided as part of the execution plan. Note,
however, that communications between nodes and transfers
between the main RAM to GPUs are not explicit: they are
deduced from the dataflow and realized in the background
(i.e., in parallel of task executions) by the runtime system.
As a consequence, when the algorithm reserves 50% of a
GPU memory to receive tiles of B and C when building a
block, this is really implemented by constraining, with control
flow, which tasks are ready to execute on that GPU, so they
cannot refer more than 50% of the GPU memory if they were
scheduled together on that GPU. Data transfers happen at the
granularity of tiles, and tasks are scheduled as soon as the
data they need is available on the GPU. The same applies to
node-to-node transfers: although processes sharing the same
row in the process grid need to have a copy of their share of
the matrix A, this broadcast happens in the background, at the
tile granularity, and tasks can be scheduled as soon as the data
they need becomes available.

In addition to the data flow, PaRSEC programmers need to
provide a description of the data to the runtime system. In our
case, the matrices A and C are given using the data collections
library available in PaRSEC. The matrix B, however, is stored
implicitly: generation functions allow to instantiate any tile
when needed. We extended PaRSEC’s data collection library
by developing a new data collection that instantiates the tasks
corresponding to the tile generation on demand, when a tile
needs to be instantiated. The usual mechanisms within the
PaRSEC runtime system to manage the life-cycle of these data
is then used to cache them as long as they are needed by any
task, and discarded after this. The algorithm ensures that each
tile of B is instantiated at most once per node that needs it
(as noted, columns of B are replicated between processes that
share the same column in the process grid), and since the
generation routine does not have a CUDA implementation,
these tasks are always executed on the CPUs.

Last, implicit data movement allows the runtime system to
select the ’best’ source of data, when multiple sources are
available. This happens, for example, when two GPU devices

need the same tile of A in our algorithm. One GPU needs
to pull it from main memory, but the second may use the
copy already on the first one, leveraging the fast NVlink
to implement a device-to-device copy, thereby reducing the
pressure on the PCI-Express bus to allow other memory
transfers. This feature comes directly from the runtime system
and does not require any modification of the algorithm itself.

V. PERFORMANCE EVALUATION

All performance measurements presented below were run
on Summit, hosted at Oak Ridge National Laboratory. Summit
holds 4,600 IBM AC922 compute nodes, each containing
two POWER9 CPUs and 6 NVIDIA Volta V100 GPUs. The
POWER9 CPUs have 22 cores running at 3.07 GHz, and 42
cores per node are made available to the application. Dual
NVLink 2.0 connections between CPUs and GPUs provides
a 25GB/s transfer rate in each direction on each NVLink,
yielding an aggregate bidirectional bandwidth of 100GB/s.

PaRSEC, the proposed GEMM implementation and the
driver program were all compiled in optimized (Release)
mode, using XLC 16.1.1-2, CUDA 9.2.148, Spectrum MPI
10.3.0.0 available on the Summit programming environment.
The BLAS3 GEMM kernel was the one provided in the
cuBLAS library shipped with CUDA. We measured the prac-
tical peak of the GEMM kernel in this version of cuBLAS and
this hardware at 7.2Teraflop/s per GPU. To obtain this value,
we ran a single GEMM operation on large matrices that were
pre-initialized in the GPU memory, repeated the operation 10
times, and took the fastest run measured.

All performance evaluation results presented below are ob-
tained by measuring the time of executing the implementation
described in Section IV, with the matrix A distributed between
the nodes in a 2D-cyclic fashion, C empty (the necessary tiles
will be allocated and initialized to zero when needed), and B
generated on demand, on the cores. The time to generate B
and inspect the execution, as well as the time to move data of
C back and forth to the GPU, are all taken into account in the
measurements presented below. Moreover, it is important to
point out that, due to the target domain science, in most cases,
the matrices A and C are too large to fit in GPU memory.

Each point is measured 5 to 10 times, and all figures
showing performance present a Tukey box plot at the mark.
On most figures, the measured variability is so small that the
box plot is hidden by the mark or the line placed at the mean
value, highlighting the stability of the distributed algorithm.

A. Synthetic Benchmarks

First, we consider matrices with random sparsity, in order
to understand the performance of the implementation in a
controlled setup. We set the number of nodes to 16, and start
from a square and dense problem (M = K = N ), then
increase N and K (keeping K = N to mimic the aspect ratios
of the matrices involved in the target coupled-cluster ABCD
contraction), and also decrease the density. Irregularity of tiling
is set randomly to be uniform between 512 and 2048 (in each
dimension), and both input matrices (A and B) have the target



 0
 50

 100
 150
 200
 250
 300

 0  250000  500000  750000Pe
rf

o
rm

a
n
ce

 (
T
fl
o
p

/s
)

N=K (M=48k)

PaRSEC

 0
 50

 100
 150
 200
 250
 300

 0  250000  500000  750000

density:

Pe
rf

o
rm

a
n
ce

 (
T
fl
o
p

/s
)

N=K (M=48k)

libDBCSR

1 0.75 0.5 0.25 0.1

Fig. 2. Performance as a function of the matrix size (N and K) and density, on 16 nodes of Summit, for the PaRSEC implementation (left) and the libDBCSR
implementation (right). Peak performance of GEMM for the 16 nodes is estimated at 672Tflop/s (16× 6GPU× 7Tflop/s)

density (the density of C being computed from the shape and
non-zero tiles of A and B). To decide which tiles are zero in
A and B, an iterative algorithm selects uniformly a non-zero
tile to eliminate, until eliminating another tile would draw the
density of the matrix (element-wise) under the threshold.

We also compare the PaRSEC implementation of the
GEMM algorithm with libDBCSR. libDBCSR [16] is a sparse
matrix library that provides a block-sparse matrix-matrix prod-
uct operation in distributed and on top of CUDA accelerators.
We implemented the same synthetic benchmark on top of
libDBCSR to serve as a basis for comparison. The benchmark
is available in the same repository as the repository holding the
implementation of the algorithm presented in this paper [5].
libDBCSR does not allow to manage multiple GPU per MPI
process, so we deployed the runs with one process per GPU
(i.e., 96 processes). Each process gets allocated 6 cores and
1 GPU. As the performance and the capacity of libDBCSR
depends on the process grid, for each problem size, we ran
with all process grids achievable with 96 processes, and kept
the best performing parameters. In most cases, the process grid
(4 × 24) was the best performing one, but a few points are
obtained with grids of (6× 16) and (8× 12).

Figure 2 depicts the performance as a function of N , K
and the density of the problem. As stated above, this figure
shows an average behavior over randomly uniform input data.
Several conclusions can be drawn. First, density is the critical
parameter of performance: it has more impact than the problem
size or shape. This is expected because a lesser matrix density
provides less opportunity for data reuse, shifting the block-
sparse GEMM from compute-intensive to data-intensive (in
this instance GPU transfer-intensive). We will revisit this topic
later.

Considering the performance of libDBCSR, first the prob-
lems considered quickly become too large for this platform
when using libDBCSR: for a dense problem (density = 1),
problems of size (48k, 192k, 192k) or more result in an
error when trying to allocate the memory on some CUDA
devices. To the best of our understanding, the algorithm used
in libDBCSR does not manage the problem considered here,
and assumes that a part of the data bigger than the available
memory on each GPU should fit in memory. As the density
gets lower, larger problems can be treated, but they all eventu-

ally reach a limit of capacity, while the algorithm described in
this work focuses on managing problems that are much larger
and do not make any assumption on the amount of memory
required on each GPU. Second, even for problems that are
manageable by both implementations, PaRSEC outperforms
libDBCSR in all our experiments. This is because libDBCSR
focuses on very small blocks (down to 6× 6), and on square
matrices [17], while the algorithm we present is designed to
manage a large B matrix and works best with larger blocks.
Note that in the square dense case (M = N = K = 48k),
the PaRSEC implementation (203 TFlops/s) still outperforms
libDBCSR (109 TFlops/s) by a factor 2. As libDBCSR does
not leverage more than one GPU accelerator per MPI process,
it was needed to create 96 processes to take advantage of
the 96 GPUs; PaRSEC on the other hand runs with only
32 processes, each MPI process managing 3 GPUs. Thus,
the libDBCSR application needs to communicate much more
between processes than the PaRSEC one. We assume that this
is the main reason behind the performance difference.

Focusing on the PaRSEC implementation, the performance
reaches only half the GEMM-peak of the GPUs, even in the
dense case. Comparing with the results that were obtained
in [4] on the same machine, using the same runtime system,
at this problem size and number of nodes, 80% to 90% of the
GEMM-peak should be achievable. This difference is due to
the problem shape, which required a different algorithm: tiles
of B are generated on demand, but the size of B does not
allow (in the application case) to keep all of them in memory
until the completion of the algorithm. It is thus necessary to
minimize the number of times that tiles of B are generated,
and this drives the design of the algorithm to work on columns
of B, while the traditional GEMM algorithms for square
matrices, e.g., [4], [18] work on square submatrices of C.
As a consequence, the algorithm is not designed to perform
optimally on square dense problems. As the A and C matrices
become short and wide, the algorithm becomes more efficient,
but the shape of the matrices themselves reduce the amount of
reuse for the tiles of A and C, and thus limits the performance
achievable in the dense case.

Last, the algorithm requires most tiles of A to be replicated
on the processes that share the same row position in the pro-
cess grid, and the corresponding data broadcasts are expensive
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Fig. 3. Theoretical arithmetic intensity (left) and time to completion (right)
of the synthetic matrix multiplication problem, on 16 nodes of Summit.

relative to the number of floating point operations, when the
problem is square. In that case, the processes start by com-
puting products with the tiles of A that are local, but if those
are not enough to completely overlap the communications,
execution stalls until the required tiles are received. When
N increases, the number of operations available to overlap
this communication increases, allowing the algorithm to reach
higher performance. This increase in operations / bytes is
illustrated in the arithmetic intensity (Figure 3).

Increasing K causes the tiles of A to be transferred to
the GPU multiple times, since the part of A assigned to
each GPU plus the column of B do not fit on the GPU
memory anymore. This reduces the performance by increasing
communication costs and reducing the effective arithmetic
intensity. The maximum arithmetic intensity (i.e., number of
floating point operation divided by the aggregate size of A,
B, and C) is depicted in Figure 3. The maximum intensity is
an upper bound on the effective intensity since it can only be
realized if A, B, and C were loaded only once to the device
memory. As seen previously, the algorithm needs to load tiles
of A multiple times, as the available memory on the GPU does
not allow to keep all the input data, effectively decreasing the
arithmetic intensity. Figure 3 also provides an explanation for
the performance increase at the beginning of the curves in
Figure 2, when columns of B and rows of A can fit together
on the GPU, and also explains why the dominating element for
the performance is the density of the matrices: as the sparsity
increases, the number of operations relative to the amount of
data to load decreases significantly, and as could be expected,
the problem shifts from a compute-intensive problem to a data-
intensive problem. In addition to this, each tile loaded on the
GPU has a lower chance to get re-used for another product,
as the number of tiles in the other matrix that correspond to
it decreases with the density.

Although the effective arithmetic intensity and the measured
performance inevitably decrease with the density of the prob-
lem, the time to solution remains dominated by the number
of operations; since the number of operations decreases faster
than the performance, as is illustrated in Figure 3, the time to
solution also decreases with the density.

B. Practical Example: Evaluation of the ABCD coupled-
cluster tensor contraction for the molecule C65H132

In this section, we use the new implementation of block-
sparse matrix multiplication to evaluate the time-determining

step of the CCSD electronic structure model (Equation (1)).
Since problem sizes and traits vary greatly in practical appli-
cations, we decided to use an example that would be most
challenging for reaching high absolute performance, namely
a quasi-1-dimensional system and small atomic orbital (AO)
basis, where the sparsity of tensors is maximized while the
optimal (from the data compression perspective) tile size is
small. The molecule we chose, C65H132, is representative of
applications to 1-d polymers and quasi-linear molecules (such
as some proteins); the choice of the def2-SVP AO basis is
representative of medium-precision simulations in chemistry
and condensed phase.

The ABCD term was evaluated using the AO-based for-
malism [19]. The input tensor T representing its initial state
in the coupled-cluster simulation was evaluated in AO basis
using the Laplace transform approximation, with the occupied
orbitals localized and both occupied and the AO basis clustered
to group spatially-close orbitals together [20]; the clustering
defines tiling of the corresponding index ranges. The CPU-
only implementation in MPQC evaluates tensor V on the fly, as
needed; due to the lack of publicly-available efficient kernels
for direct evaluation of AO integrals on GPUs (such kernels are
under development by some of us) the GPU benchmarks used
block-sparse V with the actual sparsity pattern determined by
the CPU-only code but the tiles filled with random data. The
sparse “shape” of tensor R was determined from the sparse
shapes of tensors T and V as described previously [21].

Due to the quasi-1-dimensional structure and compact basis
the T and V tensors in Eq. (1) are indeed very sparse (Figure
4). Note that the index range extents O = 196 and U = 1570
are much larger than would be practical for conventional
CCSD: using dense tensors, the operation count for the ABCD
term evaluation would be 2O2U4 ≈ 0.47 Exaflop, whereas
the use of sparsity allows to evaluate this contraction in
≈ 1 Petaflop (see Table I). Reduction of the operation cost
by more than two orders of magnitude illustrates the power
of reduced scaling formulations of the electronic structure
methods; clearly, the only way to deploy efficiently accurate
electronic structure methods on leadership-scale machines is
to focus on the reduced-scaling formalisms.

Unlike element-sparse representation, block-sparse repre-
sentation of tensors introduces an additional degree of free-
dom, namely tiling of the index ranges. The tiling has dual
purpose, to maximize the degree of sparsity and to control
performance traits such as the amount of data parallelism for
tile-level kernels and the amount of task-level parallelism for
tensor-level operations. Using tiles that are ‘too’ large will
reduce the degree of sparsity (in the limiting case of 1 tile per
dimension the representation is dense) and greatly increase the
operation count; using tiles that are ‘too’ small will decrease
the amount of data parallelism exploitable by the tile-level
kernels (in the limiting case of 1 element per tile, the rep-
resentation becomes element-sparse, typically used for sparse
matrix computation). These two objectives are contradictory,
thus in practice for models with user-controllable tiling like
the AO-basis CCSD, tiling should be optimized to balance its
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Fig. 4. Pictorial representation of matricized block-sparse tensors T , V , and R
for the C65H132 example (tiling v1 is shown, with the aspect ratio is adjusted
to make each tiles appear square). The extreme sparsity of the tensors is due
to the quasi-one-dimensional shape of the molecule.

Tiling v1 Tiling v2 Tiling v3
M ×N ×K 26576× 2464900× 2464900
#flop 877 Teraflop 923 Teraflop 1237 Teraflop
#flop (opt.) 850 Teraflop 899 Teraflop 1209 Teraflop
#GEMM tasks 1899971 468368 67818
#GEMM tasks (opt.) 1843309 455159 66315
Average #rows/block 700 [500;2500] [1000;5000]
Average #columns/block 700 [500;2500] [1000;5000]
Density of T 9.8% 10.2% 13.2%
Density of V 2.4% 2.6% 3.1%
Density of R (opt.) 14.9% 16.1% 21.7%

TABLE I
RELEVANT PROBLEM TRAITS FOR THE C65H132 TEST CASE WITH THE

THREE VARIANTS OF TILING..

effects on the operation count and performance.
To evaluate the impact of the tiling on performance, we

consider three representative tilings of the index ranges. Since
the k-means-based clustering algorithm that determines the
range tilings is quasirandom [20] and cannot ensure uniform
tiling (this would necessarily violate locality in all practical ap-
plications), these tilings are generated by specifying the target
number of clusters for each index range. Table I summarizes
the difference between the three different tilings, from the
most fine-grained one (v1) to the most coarse-grained one (v3).
Tiling granularity impacts the tile size and the sparsity of the
problem: a large grain tiling provides more irregular but larger
average and minimum tile sizes, and increases the number of
computations, as illustrated in the table and in Figure 5.

Figure 6 shows the execution time the ABCD contraction
(Eq. (1)) for the C65H132 test case with the three tilings using
between 3 and 108 V100 GPUs on Summit. Dotted lines
represent a perfect strong scaling with respect to the 3 GPUs
computation (first point). Time to solution decreases with the
number of GPUs, from 272s at 3 GPUs for v1, down to 34.9s,
at 108 GPUs. Similar trends are observed for the other tilings.
The parallel efficiency is not 1, however, as can be observed
by the difference with the theoretical scaling curve: for v1, at
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Fig. 5. Tile size distribution for the three tilings of the C65H132 test case.
All input matrices use a similar block distribution..

108 GPUs, that parallel efficiency is down to 21%, when it is
higher for v2 (36.5%), or v3 (35.2%). The cost of broadcasting
tensor T , which is needed on all ranks that share the same
rows, grows with the number of nodes and thus limits the
scalability of the approach due to the compute time on each
node becoming comparable to the communication time.

More interestingly, we observe that the overall time to
completion in the cases v2 and v3 are similar, while for
tiling v3 the contraction involves 34% more flops compared
to tiling v2! Both tiling choices lead to significantly lower
time to solution than the most fine-grained tiling v1, which
has the lowest flop count of all three tilings. This is a good
demonstration of the dual aspect of tiling: larger tiles lead
to higher performance of tile-level kernels but reduce the
amount of sparsity and thus increase the operation count. This
is justified by Figure 7, which shows the performance per
GPU in the same experiment. Clearly, by increasing tiling it
is possible to trade sparsity for performance; the problem of
how to determine the optimal tiling is left to future studies.

The performance per GPU follows an inverse trend with
the tiling size: as tiles grow bigger (v3), each GPU kernel
involves more flops. Moreover, the practical peak performance
of these GPUs is around 7 Teraflop/s, while we observe up
to 2.5Teraflop/s for the v3 tiling, which represents 35% of
the peak performance, degrading to 11% at 108 GPUs (a
30% parallel efficiency, as noted before). This shows that the
arithmetic intensity (number of computation per bytes loaded)
is too low to fully exploit the GPUs. Since a peak performance
on a single tile can be obtained for tiles of 728× 728, which
is around the average tile size for tiling v1, the problem does
not reside in the tile sizes themselves, but in the tile re-use:
the sparsity of the matrices V and T keep the re-use of data
loaded on the GPU to a low amount, and GPU I/O dominates
the execution time. Similar trends are observed in [17], where
the performance at scale goes down to 30 Gflop/s per node
(representing 3% of the GEMM-peak of that system).
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As observed previously, the performance per GPU decreases
with the number of GPUs, due to the added number of nodes
involved that introduce communications: when going from 3
to 6 GPUs, the computation can remain on the same node, and
performance improves slightly; however upon further increase
of the number of compute units, more nodes need to be
introduced, increasing the total amount of communications.
However, Figure 8 shows that, overall, the performance con-
tinue to increase up to 108 GPUs, when the completion time
is less than a minute, even for the finest grain case. Because
GPU I/O dominates the performance per GPU, increasing the
amount of computation (even significantly, when comparing
v2 and v3) does not impact the time to solution, because these
added computations can be done in parallel with the data
transfers. In the worst case, reducing the computations, but
also reducing data reuse by increasing sparsity (v1), increases
the time to completion instead of decreasing it.

To compare the performance of the new GPU imple-
mentation of the state-of-the-art tensor contraction, we used
the CPU-only code implemented in the MPQC package to
evaluate the ABCD contraction for the C65H132 test case (no
GPU version exists unfortunately). The computations utilizing
{8,16} nodes of Summit (total of 672 compute cores) com-
pleted in {308,158} seconds, respectively. The corresponding
GPU implementation using the most performant tiling v3 on
all GPUs available on the same set of nodes of Summit
would reduce the time to solution by a factor ≈ 10. The
estimated efficiency of the CPU-only computation is rather
low: assuming 2 Teraflop/s CPU peak performance per node
for the 16-node job leads to an efficiency of ≈ 17% relatively
to peak. Since the known performance heuristics of the CPU-
only code in the MPQC package are established primarily for
x86 architecture, it is likely that the CPU-only performance
on Summit can be improved. Nevertheless the comparison is
fair: MPQC is well-documented as a state-of-the-art coupled-
cluster code [7], [22], and its CPU-only performance on
Summit is an accurate reflection of the current state-of-the-
art of chemistry codes on Summit.

VI. RELATED WORK

Due to lack of space, we only discuss a few closely related
references in this section. A full review of related work is
available in the companion report [13].

Block-Sparse Matrix Product on GPU: There are few
works directly targeting block-sparse matrix product on dis-
tributed systems using accelerators: [23] uses tensor flow [24]

to implement a block-sparse matrix-product on a single GPU;
SuiteSparse [25] includes matrix-product operations for block-
sparse and sparse matrices, on single node GPU; [26], [27]
present Chunk and Tasks, a distributed algorithm for block-
sparse matrix product on GPUs, using quad-trees to represent
the sparsity and reduce the memory overheads. This algorithm
focuses on the product of square matrices, at scales that are
much smaller than the problem considered in this paper.

In Section V we have compared our approach with a CUDA-
enabled version of Distributed Block Compressed Sparse Row
(DBCSR) library [17], [28], a block-sparse matrix library used
by the CP2K framework [29]. DBCSR originally targeted
square block-sparse matrices, thus it uses the Cannon algo-
rithm to schedule communications between nodes, re-orders
columns and rows to balance the work between nodes, and
uses dynamic scheduling of work on the GPU to orchestrate
computations. Matrices in CP2K typically have blocks of
small sizes (this assumption does not apply to our data), thus
DBCSR generates JIT-compiled optimized kernels for these
particular block sizes. DBCSR was recently generalized to ten-
sor contractions [18], which required introduction of modified
versions of the Cannon algorithm with partial replication of
data; however, the two target aspect ratios considered do not
match ours, and no absolute performance data was presented.

To the best of our knowledge, our algorithm is the first algo-
rithm published in the literature that is capable of minimizing
the transfers from CPU to GPU memory for arbitrary matrix
sizes and shapes, specifically targets multi-GPU nodes by tak-
ing advantage of the NVlink device-to-device communication
capability when the opportunity arises, and leverages the shape
of the large matrix to reduce node-to-node communications.

Electronic Structure: Distributed-memory algorithms for
coupled-cluster and other many-body electronic structure
methods have been in development since late 1980s and are
now available in several packages (see [7] for a recent review
of CCSD implementations), most notably in NWChem (a flag-
ship distributed-memory quantum chemistry code), ACESIII,
and GAMESS. Unfortunately very little of this capability can
be executed on distributed-memory heterogeneous platforms.
NWChem has a CUDA-based implementation of perturbative
triples correction to CCSD, also known as (T), that has been
demonstrated on a GPU-equipped distributed-memory plat-
form and can take advantage of multiple GPUs and multiple
CPU cores on each node (however, the CCSD code is CPU
only) [30]. Very recently a distributed memory implementation



of (T) in MPQC was demonstrated that can take advantage
of multiple GPUs per node [22]. GAMESS has demonstrated
a GPU-capable implementation of select terms in the CCSD
code on 1 node with 1 GPU [31].

VII. CONCLUSION

In this paper, we focused on the block-sparse tensor con-
traction, a paradigmatic kernel in many scientific applica-
tions, whose characteristics (heterogeneity, sparsity, reduced
computational intensity) make it a challenging candidate for
distributed multi-GPU platforms. We have provided a highly-
tuned algorithm that carefully orchestrates task executions
and data transfers between CPU and GPUs and between
nodes to maximize resource occupancy. The flexibility and
programmability of the underlying PaRSEC runtime greatly
improved the algorithm implementation while providing a
highly efficient support for multi-GPU distributed-memory
platforms. The resulting implementation takes advantage of
the GPUs, a major source of computing power, and obtains
an efficiency and performance yet unrealized in the domain.
Although comparison with existing tools to solve the same
problem are not straightforward because these tools do not run
on the same hardware, the deployment on a real case shows a
factor 10 of speedup using the same nodes. This shows that our
new algorithm offers promising perspectives to solve problems
of unprecedented scale and complexity.

Future work will aim at modeling the interactions between
the tiling and the performance, in order to increase the effi-
ciency of the algorithm. We will also extend the experiments
to larger problems, representative of more complex molecular
structures. Although we focused the evaluation on a repre-
sentative of the most sparse cases, different molecules have
the potential to provide much denser and compute-intensive
input matrices, thereby (likely) enabling our algorithm to reach
higher peak performance.
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